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Stochastic models of receptor
oligomerization by bivalent ligand

Tomás Alarcón* and Karen M. Page

Bioinformatics Unit, Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

In this paper, we develop stochastic models of receptor binding by a bivalent ligand.
A detailed kinetic study allows us to analyse the role of cross-linking in cell activation by
receptor oligomerization. We show how oligomer formation could act to buffer intracellular
signalling against stochastic fluctuations. In addition, we put forward the hypothesis that
formation of long linear oligomers increases the range of ligand concentration to which the
cell is responsive, whereas formation of closed oligomers increases ligand concentration
specificity. Thus, different physiological functions requiring different degrees of specificity to
ligand concentration would favour formation of oligomers with different lengths and
geometries. Furthermore, provided that ligand concentration specificity is taken as a design
principle, our model enables us to estimate parameters, such as the minimum proportion of
receptors, that must engage in oligomer formation in order to trigger a cellular response.

Keywords: receptor oligomerization; cross-linking; stochastic model
1. INTRODUCTION

Cellular responses are frequently triggered by detection
of extracellular signalling molecules (ligands) by
specialized cell-surface proteins called receptors. Upon
receptor binding, an intracellular signalling cascade
takes place, eliciting a cellular response.

There are several types of membrane-bound
receptor. Broadly speaking, they can be divided in
those that depend on oligomer formation for triggering
a cellular response and those which do not (e.g. G
protein-linked receptors; Helmreich 2001). Our focus in
this study will be on the former class of receptors.

Receptor tyrosine kinases (RTKs) bind to hormones,
growth factors and cytokines. B cell and T receptors,
which are antigen(epitope)-specific and play a funda-
mental role in triggering the immune response, are
closely related to RTKs (Tamir & Cambier 1998). The
basis of RTK binding and activation has been a major
problem in cellular signalling. Unlike G protein-linked
receptors, which are heptamers that cross the cell
membrane several times, RTKs are single polypeptide
chains that cross the membrane only once. The problem
is how a receptor with such structure is activated upon
ligand binding (Helmreich 2001). The answer is by
oligomerization also commonly referred to as cross-
linking in the biophysical literature. Hormones, growth
factors, cytokines and antigens are usually multivalent
ligands, i.e. they have more than one binding site
and can engage several receptors (Lauffenburger &
Linderman 1993). Following receptor oligomerization,
the RTK domains within their cytoplasmic tails
orrespondence (t.alarcon@cs.ucl.ac.uk).
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cross-activate each other. Upon cross-activation, the
phosphate groups attached to selected tyroresidues
provide high-affinity docking sites for several tyrosine
kinases carrying the SH2 domain, most notably the src
family of tyrosine kinases (Alberts et al. 2002). This
process constitutes the early steps in cellular response
to an extracellular signal.

The literature on models of multivalent receptor/
multivalent ligand binding is extensive and we do not
intend to produce a complete review only noting a few
works focusing on receptor oligomerization. For an
extensive review of early work on receptors, in general,
we refer the reader to themonographbyLauffenburger&
Linderman (1993). Goldstein et al. (2004) review most
recent developments in the field, specially related to
immune system receptors.

Early theoretical work on formation of bivalent
receptor aggregates by bivalent ligands was conducted
by Perelson & DeLisi (1980). This work was later on
extended by Posner et al. (1995). Perelson & DeLisi
(1980) study the formation of linear aggregates of
arbitrary length. Introducing the so-called equivalent
site approximation (i.e. all binding sites have the same
property regardless of the size of the aggregate to which
they belong), they reduce an infinite number of ordinary
differential equations (ODEs) describing the formation
of aggregates of arbitrary size to two equations (for the
free and bound ligand concentration) and a conser-
vation law. Moreover, Perelson & DeLisi (1980) show
that the concentration of chains of any size can be
expressed in terms of the three ligand state concen-
trations (free, one bound site and two bound sites).

However, these results have been proved by Posner
et al. (1995) to hold only if linear aggregates are
J. R. Soc. Interface (2006) 3, 545–559
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Figure 1. Schematic of the cross-linking model with (a) dimer
formation, (b) trimer formation and (c) ring formation. The
physical meaning of the parameter D is illustrated in (d ).
B, X, X1 and Y are the number of oligomers of type (1), (2),
(3) and (4), as shown in panel (e), respectively. In panels (d )
and (e), red colour indicates diffusible ligand, whereas black
colour denotes membrane-bound receptor.
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allowed. If rings can form, the equivalent site approxi-
mation fails and such general results cannot be
obtained. Posner et al. (1995) show that if rings are
allowed to form only up to a maximum size, k, the
system of infinite ODEs can be reduced to a system of
4kC2 equations. Posner et al. (1995) also show that in
this case it is not possible to find an expression for the
aggregate size distribution.

McKeithan (1995) introduces the concept of kinetic
proof-reading in the context of T cell receptor binding
to explain how small affinity differences between foreign
and self-antigens could elicit T cell activation. Hlavacek
et al. (2001) gives a more recent exploration of the
relationship between cross-linking effects and kinetic
proof-reading.

Sulzer et al. (1996) reconsider the role of cross-
linking in the context of the cellular response to a
collection of bivalent ligands with different affinities for
the receptor as, for example, would be the case in a
polyclonal anti-receptor serum. To analyse this system,
they defined a binding field and a cross-linking field. In
terms of these quantities, they study the properties of
the cross-linking curve and find conditions for clonal
expansion under stimulation with a mixture of different
ligands.

Further refinement of the models of multivalent
receptor/multivalent ligand binding was achieved by
Hlavacek et al. (1999) when considering steric hin-
drance by introducing a steric hindrance factor, which
accounted for the fraction of unbound ligand sites
accessible to receptors and therefore available for
binding. A detailed analysis of the relationship between
receptor clustering and signalling in the particular case
of cell-surface IgE-FceRI has been recently carried out
by Posner et al. (2004).

MacGabhann & Popel (2005) studied the system
vascular endothelial growth factor (VEGF)/VEGF
receptor 2/neuropilin-1. VEGF receptor 2 (VEGFR2)
and neuropilin-1 (NRP1) are both found on the surface
of endothelial cells. They do not interact directly but
can be cross-linked by a VEGF isoform which has
binding sites for both VEGFR2 and NRP1.

In this paper, we show how oligomer formation could
act to buffer intracellular signalling against stochastic
fluctuations when the number of receptors is smaller
than in normal conditions. In addition, we put forward
the hypothesis that the use of dimers, trimers and rings
of cross-linked receptors could serve different physio-
logical purposes requiring the cells to respond to
different ligand concentration ranges. Furthermore, if
we accept ligand concentration specificity as a valid
design principle for receptor function, we show how our
model, given that we know other parameter values
(mainly affinities and number of receptors), could be
used to estimate quantities, such as the minimal
proportion of receptors, engaged in oligomer formation
in order to trigger a cellular response.

This article is organized as follows. In §2, we
formulate our model for cell receptor cross-linking by
bivalent ligands and present simulation results. In §3,
we summarize and discuss the main results of this
analysis and present our conclusions.
J. R. Soc. Interface (2006)
2. MODELS OF RECEPTOR CROSS-LINKING BY
BIVALENT LIGANDS

In §1, we have reviewed some mathematical models of
immune-receptors and the different issues they address.
Many of them are formulated in terms of nonlinear
ODEs using the law of mass action (LMA; Murray
2001). This approximation is known to be valid for
large, homogeneous systems. When either of these two
assumptions fail to hold, new phenomena arise that the
LMA fails to predict or explain (Durrett & Levin 1994;
Togashi & Kaneko 2001; Louzon et al. 2003; Schnell &
Turner 2004). In this section, we investigate a spatially
homogeneous distribution of receptors on the cell
surface. However, in our study of the behaviour of
oligomerized receptors, we allow the total number of
receptors to be small.

The purpose of this is to determine what the impact
would be of reducing the expression of receptors on
signalling. This might be a relevant issue, for example,
to assess the influence of reducing mIg on the treatment
efficacy in lymphoma B cells under certain types of
immunotherapy (Vitetta & Uhr 1994; Page & Uhr
2005), in which an anti-idiotypic antibody is used either
passively or stimulated by a vaccine.

In particular, we formulate a stochastic model of
receptor binding and oligomerization by bivalent
ligands. Stochastic models of reacting systems can be
formulated as Markov processes in terms of a Master
equation (Gardiner 1983). For a general chemical

http://rsif.royalsocietypublishing.org/


Table 1. Reaction probability per unit time (in non-dimensional form), am; mZ1;.; 4, for the four elementary reaction steps
involved in Model 1 schematically shown in figure 1a. (A stands for the affinity of ligand for its receptor, L is the concentration of
ligand given in mol lK1 andAx for the affinity of a bound receptor for an unbound one to be referred to as cross-linking affinity (see
table 4).)

reaction rate r i reaction

a1ZALNu r1uZK1; r1bZ1; r1xZ0 receptor binding
a2ZNb r2uZ1; r2bZK1; r2xZ0 receptor–ligand dissociation

a3ZAxNpD2rub r3uZK1; r3bZK1; r3xZ1 dimer formation

a4Z2Nx r4uZ1; r4bZ1; r4xZK1 dimer dissociation
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Figure 2. Simulation results from a single realization for (a) NZ10 000, (b) NZ1000, (c) NZ100, (d) NZ50. Black lines
correspond to x, red lines to b, and green lines to u. LZ10K7 mol lK1. See appendix A for details of the simulation procedure.

1Other approaches in terms of Markov chains may be formulated (see
ch. 4 of Lauffenburger & Linderman (1993) and references therein).
Nevertheless, as with the Master equation formulation, this approach
becomes very difficult to handle analytically for multi-dimensional
systems.
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system, the corresponding Master equation reads:

vPðX; tÞ
vt

Z
X
i

ðW ðXCr i; r i; tÞPðXCr i; tÞ

KW ðX; r i; tÞPðX; tÞÞ; ð2:1Þ

where X is a vector whose components are the number
of the different molecules involved in the reaction, the
components of the vector r i are the corresponding
increments in the number of molecules after reaction i
has occurred, W ðX; r; tÞ are the reaction probabilities
per unit time and PðX; tÞ is the probability density of
finding the system in a given configuration X at time t
(Kubo et al. 1973). The formulation in terms of a
Master equation is mathematically very elegant, but its
J. R. Soc. Interface (2006)
analytical treatment for multi-dimensional systems
becomes extremely difficult1 (Gillespie 1977). In chemi-
cal systems, the reaction probabilities per unit time
satisfy (Kubo et al. 1973; Gillespie 1977)

W ðX; r i; tÞZNwðx; r i; tÞCOðN 0Þ; ð2:2Þ

where N is the total number of molecules in the system
and xZX=N . This allows us to rewrite the Master

http://rsif.royalsocietypublishing.org/
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Figure 3. Probability density corresponding to Model 1. (a)
NZ1000, average over 300 realizations. (b) NZ100, average
over 700 realizations. (c) NZ50, average over 700 realiz-
ations. LZ10K7 mol lK1. See appendix A for details of the
simulation procedure.
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equation (2.1) as

1

N

vPðx; tÞ
vt

Z
X
r

w xC
r i

N
; r; t

� �
P xC

r i

N
; t

� ��
Kwðx; r i; tÞPðx; tÞ

�
: ð2:3Þ

If N[1, then a Wentzel–Kramer–Brillouin (WKB)
ansatz is used to obtain the solution of equation (2.3)
(see Kubo et al. 1973). However, since we are interested
in studying this system for small values of N, such
approximate solutions are not too interesting. Instead,
we perform numerical simulations of the reaction
mechanism shown in figure 1 using Gillespie’s exact
stochastic simulation algorithm (ESSA; see appendix A
and Gillespie (1977)), which is equivalent to the Master
equation.

We start by formulating a model in which only
dimers of receptors can be formed (as would be the
case for many growth factors (Alberts et al. 2002), in
which bivalent ligand binds monovalent receptors).
Hereafter this model will be referred to as Model 1.
Afterwards we will formulate models allowing the
formation of larger oligomers in the form of linear (to
be referred to as Model 2) or closed chains (to be
referred to as Model 3).

Let U be the number of unbound receptors and
uhU=N . Similarly, we define B and b, and X and x as
the number and proportion of bound receptors and
cross-linked receptors, respectively. Hence, the state
vector X will be given by XZðU ;B;XÞ and, corre-
spondingly, xZðu; b; xÞ.

The only information we need to specify our Markov
model is ai hW ðX; r i; tÞ, ci According to figure 1a,
there are four elementary reaction steps (i.e. receptor
binding and unbinding and dimer formation and
dissociation) characterized by a vector r iZðriu; rib; rixÞ
iZ1;.; 4,where riu, rib, and rix are the increments in the
number of unbound receptors, bound receptors and
dimers, respectively, corresponding to the elementary
transition i. Note that, due to conservation of the total
number of receptors the components of r i must satisfy
riuCribC2rixZ0, ci. The reaction probabilities per
unit time (transition rates) ai are given in table 1.
In appendix A, we give full details of how they have been
obtained. The transition rate corresponding to reaction
r3 needs further clarification. The transition rate for this
reaction corresponds to the formation of a dimer. It is
obtained as the product of two factors, namely, the rate
of binding between an unbound receptor and a ligand–
receptor heterodimer and the probability of finding
another receptor within a distance D (see figure 1 for its
physical meaning) of the ligand–receptor heterodimer.
The later is given by pD2r, with rZN=4pR2 being the
surface density of receptors on the cell surface andR, the
average radius of a B cell.

Our first simulation results, shown in figures 2 and 3,
show the effect of reducing the total number of surface
receptors. We have done simulations with NZ104, 103,
102 and 50. Figure 2 shows particular realizations of
the time evolution of the system. Figure 3 shows the
stationary probability density for different values of N,
averaged over a number of realizations (see caption of
figure 3 for details).
J. R. Soc. Interface (2006)
The results shown in figure 2 show how decreasing
the number of receptors has a strong effect on the
behaviour of the system. For NZ104 (figure 2a),
fluctuations are hardly noticeable. In fact, the station-
ary probability density is strongly peaked around the
average stationary state, exhibiting a Dirac’s delta-like
behaviour: the variance around the average stationary
state is very small. As the total number of receptors
decreases, we obtain a different picture: as expected
(Kubo et al. 1973), the effects of fluctuations become
more important. For NZ103 (figure 2a), the behaviour
of the system is Gaussian-like. The effects of fluctu-
ations become more dramatic if the number of receptors
is reduced further. As shown in figures 2c and 3b and 2d
and 3c, decreasing further the number of receptors
yields a transition between the Gaussian-like

http://rsif.royalsocietypublishing.org/


Table 2. Reaction probability per unit time (in non-dimensional form), am; mZ1;.; 10, for Model 2 schematically shown in
figure 1b.

reaction rate r i reaction

a1ZALNu r1uZK1; r1bZ1; r1xZ0; r1x1Z0; r1yZ0 receptor binding

a2ZNb r2uZ1; r2bZK1; r2xZ0; r2x1Z0; r2yZ0 receptor–ligand dissociation

a3ZAxNpD2rub r3uZK1; r3bZK1; r3xZ1; r3x1Z0; r3yZ0 dimer formation

a4ZALNx r4uZ0; r4bZ0; r4xZK1; r4x1Z1; r4yZ0; r4zZ0 see figure 1

a5ZAxNpD2rux1 r5uZK1; r5bZ0; r5xZ0; r5x1ZK1; r5yZ1 see figure 1

a6Z2Nx r6uZ1; r6bZ1; r6xZK1; r6x1Z0; r6yZ0 dimer dissociation

a7ZAxNpD2rxb r7uZ0; r7bZK1; r7xZK1; r7x1Z0; r7yZ1 trimer formation

a8Z2Ny r8uZ0; r8bZ1; r8xZ1; r8x1Z0; r8yZK1 trimer dissociation

a9ZNx1 r9uZ0; r9bZ0; r9xZ1; r9x1ZK1; r9yZ0 see figure 1

a10ZAxNpD2rbx1 r10uZ0; r10bZK1; r10xZ0; r10x1ZK1; r10yZ1 see figure 1

Table 3. Reaction probability per unit time (in non-dimensional form), am; mZ1;.; 12, for the four elementary reaction steps
involved in Model 3 schematically shown in figure 1c.

reaction rate r i reaction

a1ZALNu r1uZK1; r1bZ1; r1xZ0; r1x1Z0; r1yZ0; r1rZ0 receptor binding

a2ZNb r2uZ1; r2bZK1; r2xZ0; r2x1Z0; r2yZ0; r2rZ0 receptor–ligand dissociation

a3ZAxNpD2rub r3uZK1; r3bZK1; r3xZ1; r3x1Z0; r3yZ0; r3zZ0 dimer formation

a4ZALNx r4uZ0; r4bZ0; r4xZK1; r4x1Z1; r4yZ0; r4zZ0; r3rZ0 see figure 1

a5ZAxNpD2rux1 r5uZK1; r5bZ0; r5xZ0; r5x1ZK1; r5yZ1; r3rZ0 see figure 1

a6Z2Nx r6uZ1; r6bZ1; r6xZK1; r6x1Z0; r6yZ0; r6rZ0 dimer dissociation

a7ZAxNpD2rxb r7uZ0; r7bZK1; r7xZK1; r7x1Z0; r7yZ1; r7rZ0 trimer formation

a8Z2Ny r8uZ0; r8bZ1; r8xZ1; r8x1Z0; r8yZK1; r8rZ0 trimer dissociation

a9ZAxNy r9uZ0; r9bZ0; r9xZ0; r9x1Z0; r9yZK1; r9rZ1 ring formation

a10ZNr r10uZ0; r10bZ0; r10xZ0; r10x1Z0; r10yZ1; r10rZK1 ring dissociation

a11ZNx1 r11uZ0; r11bZ0; r11xZ1; r11x1ZK1; r11yZ0 see figure 1

a12ZAxNpD2rbx1 r12uZ0; r12bZK1; r12xZ0; r12x1ZK1; r12yZ1 see figure 1
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behaviour exhibited for larger receptor numbers and
a multi-stable behaviour.2 This transition is a type of
noise-induced transition (Hormsthemke & Lefever
1984), as the corresponding (LMA) deterministic
system does not exhibit such a transition. Its nature
is similar to the discreteness-induced transition
observed by Togashi & Kaneko (2001) in a model for
small autocatalytic systems.

These simulations show that reducing the number of
receptors yields a diluted system, in which the predic-
tions of LMA fail to capture some of the essential
characteristics of the system. Hence if we want to
investigate the response of a B cell to a bivalent antigen
as the number of B-cell receptors (BCRs) decreases, the
stochastic formulation seems to be more appropriate.
2.1. Dynamics of the binding and unbinding
process: importance of kinetic
proof-reading

One of the aims of the present study is to assess, in a
more general setting, whether kinetic proof-reading
(McKeithan 1995) explains the importance of receptor
2This means that the probability distribution goes from exhibiting a
single maximum (Gaussian-like behaviour) to presenting several
maxima, giving rise to multiple stable states and (random) transitions
between them.

J. R. Soc. Interface (2006)
cross-linking for building up an appropriate cellular
response. In fact, it has been already suggested that in
other immune-receptors there may be ways to escape
kinetic proof-reading (Hlavacek et al. 2001).

Kinetic proof-reading is wielded as a reason why
cross-linking is necessary for an efficient response of B
cells (and in fact many other receptor binding-mediated
cellular responses): the receptor needs to be bound to its
ligand for long enough for the activation process of the
proteins (usually kinases) and/or second messengers
mediating the response to be completed and the
signalling pathways initiated (McKeithan 1995).

Let us assume thatQ is the threshold number of cross-
links that need to be formed in order to produce
signalling within the cell (Sulzer et al. 1996). If we
assume that ligation of a single receptor can also produce
signalling, the threshold number of bound receptors
needed for signalling can be assumed to be 2Q.

In order to estimate whether oligomers are, on
average, more stable than bound ligands, we proceed
as follows. Let kKE be the rate of dissociation of a
‘typical’ Src protein tyrosine kinase (PTK) fromabound
receptor. Its inverse is a measure of the average time a
Src PTK remains bound to a bound/cross-linked
receptor. Since RTKs and immune receptors depend
on PTKs to relay the signal (Tamir & Cambier 1998;
Alberts et al. 2002; Goldsby et al. 2003), they
cannot trigger any signalling pathways, unless they

http://rsif.royalsocietypublishing.org/
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Figure 4. Simulation results for Model 1 showing (a) QbðTÞ and (b) QxðTÞ for TZ10kK1
off as a function of the dimensionless

quantity AL, where A is the affinity and L the ligand concentration. Blue lines correspond to NZ108 and Q=NZ0:45, red
lines to NZ1080 and Q=NZ0:045 and black lines to NZ10 800 and Q=NZ0:0045. In each case, we have averaged over
100 realizations.
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where A is the affinity and L the ligand concentration. Black
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lines to NZ108. Q=NZ0:45. In each case, we have averaged
over 100 realizations.

550 Models of receptor oligomerization T. Alarcón and K. M. Page

 rsif.royalsocietypublishing.orgDownloaded from 
remain bound/cross-linked for long enough (longer than
kK1
KE). Hence, we use the quantities QxðTÞhPðXRQ;
sxCTÞ and QbðTÞhPðBR2Q; sbCTÞ, i.e. the
(steady-state, which in this context means that the
moments of the probability density do not change in
time) probabilities that at time sxCT X remainsRQ

and at time sbCT B remainsR2Q, respectively, with sx
(sb) defined as the time of the first occurrence of the event
XRQ (BR2Q). In our case, we takeTZkK1

KE . Hlavacek
et al. (2001) have estimated that, for FceRI receptors,
kKE is 2.5 times smaller than koff .We will useTZ10kK1

off .
See appendix A for full details of how QxðTÞ and QbðTÞ
are computed.

The results shown in figure 4 demonstrate that
dimers are not intrinsically more stable than
monomers.3 They simply appear to be stable at
different ranges of ligand concentration. Hence, kinetic
proof-reading does not seem to be an important factor
in explaining oligomer formation in the kind of system
under examination here. A reason for this might be
that, in T cell receptors, the differences in affinity
between self- and foreign antigens are typically very
small, hence the necessity for kinetic proof-reading
(McKeithan 1995). The receptors we are looking at
have high affinities for their ligands and therefore
kinetic proof-reading might not be an issue.
2.2. Models with formation of longer oligomers

In this section, we extend our previous model to
include the formation of longer oligomers, in particular
trimers (Model 2). The number of trimers is denoted
by Y and their concentration4 yhY=N . The number
3Here, we understand by ‘stability’ that either the number of cross-
linked receptors or the number of bound receptors remain above a
certain thershold long enough to trigger receptor binding-induced
signalling.
4Hereafter, when the term ‘concentration’ refers to the variables of
our models it is to be understood as the corresponding proportion with
respect to the total number of receptors. When referred to the ligand,
its meaning must be understood to be the usual one.

J. R. Soc. Interface (2006)
of dimers bound to two molecules of ligand is
denoted by X1 and their concentration x1 hX1=N
(see figure 1). Hence, in this case the state vector X
will be given by XZðU ;B;X ;X1;Y Þ and, correspon-
dingly, xZðu; b; x; x1; yÞ. The reaction probabilities
per unit time for this model are given in table 2 and
have been obtained following the procedure detailed in
appendix A.

It has also been observed that trimers can be present
as linear (open) chains or can form rings (closed chains)
(Lauffenburger & Linderman 1993). In this case, we will
consider only formation of chains of up to three cross-
linked receptors that then can form rings (Model 3).
The state vector X will be given by XZðU ;B;X ;
X1;Y ;RÞ, where Y is the number of linear trimers and
R is the number of rings-like trimers. Correspondingly,
xZðu; b; x; x1; y; rÞ, where yhY=N and rhR=N . The

http://rsif.royalsocietypublishing.org/
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reaction probabilities per unit time for the model with
linear trimers forming rings are given in table 3 (see
appendix A for details how they have been obtained).

These simulation results seem to indicate one
possible role of cross-linking. Comparing the
results shown in figures 2–6 and 10, we can see
that forming long oligomers (longer than dimers)
reduces the effects of the fluctuations. Hence, it
might be argued that cross-linking acts like a
noise-suppressor mechanism. It is also interesting
to observe that the size of the fluctuations is
smaller in Model 3 than in Model 2, even when
rings are formed by three cross-linked receptors.
This result seems to indicate that not only the
number of receptors within a cluster, but also the
topology of the cluster appears to be important for
noise-suppression (figures 7–11).

On the other hand, from figures 8 and 12, we can
reach the same conclusions regarding kinetic proof-
reading as in the previous case.

From the results shown in figure 14, we observe
that the width of the bell-shaped curves correspond-
ing QxðTÞ is bigger for Model 2 (figure 8) than for
Model 1. Interestingly, the width of QxðTÞ for Model
3 is smaller than the width for QxðTÞ for Model 2.
Moreover, comparing figure 14a–c shows that QxðTÞ
for Model 1 is biased towards smaller ligand
concentrations than QxðTÞ for Model 3. These
observations might shed some light on the physio-
logical roles of receptors forming oligomers of
different lengths and geometries (linear or closed).
According to our results, monovalent receptors
binding a bivalent ligand (only dimer formation is
allowed in such under these conditions) might be
used for response to signal which are present in a
specific, rather low, range of concentration (see
figure 14, dimer, Q=NZ0:45). This is the case, for
example, for growth factor receptors, in which our
prediction seems to be supported by the fact that
growth factors are usually present only at very low
concentrations (10K11–10K9 M according to Alberts
J. R. Soc. Interface (2006)
et al. 2002). In this scenario, receptors forming longer
linear chains would be used to detect signals present
in broader range of concentrations, whereas ring
formation would be used as a mechanism to recover
ligand concentration specificity in cell response.

Another interesting feature of the quantity QxðTÞ is
observed when looking at figures 5, 9 and 13. As the
total number of receptors increases the width of
the curve QxðTÞ as a function of log(AL) changes. In
the case of Model 1 it increases, indicating that the
receptor is potentially responsive to a wider range of
ligand concentration. On the contrary, for Models 2 and
3 the width of QxðTÞ as a function of log(AL) decreases
as N grows.
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When the total number of receptors is increased in
Model 1, the range at which the cell is responsive shifts
to higher values of the parameter AL (higher ligand
concentrations).
2.3. Ligand concentration specificity
as a design principle

The models described in this paper might be useful to
estimate parameter values. In particular, Q=N , i.e. the
threshold proportion of receptors that need to be
engaged in oligomer formation to produce a cellular
response, and Ax , the cross-linking affinity may be
estimated. A further assumption is needed, namely,
that ligand concentration specificity (i.e. the cell
responds only to a narrow range of values of the ligand
concentration) is a ‘receptor design principle’.

Making this assumption, we can observe from
figure 14 that for the models with trimer formation
and ring formation, the value predicted by our model
and the ligand concentration specificity design principle
yields Q=Nx0:45, which means that atleast 90% of the
receptors are engaged in oligomer formation.

Using this design principle, we might be able to
say something about the value of Ax for Models 2
J. R. Soc. Interface (2006)
and 3. Concerning Model 2, the results in figure 15a
show that values of 102%Ax%104 yield a reduced
range of ligand concentration in which the cell is
responsive to the signal, as compared to the results
shown in figure 14b obtained with AxZ107. As for
Model 3, specificity is achieved for roughly the same
range of values of Ax .
3. CONCLUSIONS AND DISCUSSION

We have presented and analysed three models of ligand
binding-induced oligomerization of cell surface
receptors, accounting for the formation of oligomers of
different lengths (dimers and trimers) and different
topologies (linear trimers or rings). This approach has
allowed us to dissect the effect on cellular signalling of
the formation of each one of these three different
structures under stimulation by bivalent ligand.

The stochastic formulation of the model has been
used to study the behaviour of thesemodels as a function
of the number of receptors. Not surprisingly, small
numbers of receptors induce fluctuations. However, the
intensity of these fluctuations depends on the size and
topology of the oligomers formed by cross-linking. In
fact, cross-linking appears to buffer the system against
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noise, as fluctuations are smaller in Model 3, in which
rings are allowed to form, than in Model 2 in which only
linear trimer formation is considered. Noise intensity in
Model 2, in turn, is smaller than in Model 1, where only
dimer formation is allowed.

The curves showing QxðTÞ as a function of ligand
concentration can be interpreted as describing cell
responses to extracellular stimulation. Cross-linking
produces cellular response only in a bound interval of
ligand concentration more or less centred around the
J. R. Soc. Interface (2006)
receptor affinity. This property has been previously
observed in a number of experimental (Banu &
Watanabe 1999; Yamazaki et al. 2002) and theoretical
studies (Lauffenburger & Linderman 1993; Sulzer et al.
1996). However, its possible therapeutic relevance has
been overlooked in some pathological situations, as for
example in cancer.

Two examples in the context of anti-tumour
therapy, in which ligand/receptor binding dynamics
appears to play an important role, are anti-angiogenic
therapy in solid tumours and immunotherapy in B-cell
lymphomas. Regarding the former, many of the current
protocols under investigation involve drugs which
would neutralize the several types of tumour-angio-
genic factors, most notably VEGF (table 4). In other
words, the aim is to reduce the concentration of ‘active’
growth factor. However, according to the results
obtained with Model 1 (which would be applicable to
most growth factor/growth factor receptor systems),
an equally effective strategy would be to increase the
levels of VEGF, in particular, if this is combined with
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an increase in the minimum number of receptors
engaged in oligomer formation to trigger signalling, Q
(see figure 14a).

Lymphoma B cells carry on their surface an antibody
with a unique idiotype. An antibody to this idiotype can
discriminate lymphoma B cells from normal B cells and
can be administered passively or produced by the
immune system in response to a vaccine. In either case,
the anti-idiotype binds the antibody on the surface of the
lymphomaB cells, triggering a signalling cascade, which
maydecide the fate (i.e. apoptosis or quiescence) of these
cells. Models 2 and 3 show how kinetic properties of the
anti-idiotype/antibody binding process could help to
increase or reduce the range of responsiveness of the
lymphoma B cells to therapeutic antibody.

The analysis of the feasibility of such approaches
to cancer treatment as well as further investigation
of the therapeutic implications of the biophysical
properties of ligand/receptor binding and elaboration
of these arguments will be the subject of future
research.

We have found that oligomers of different lengths
and topologies yield different intervals of responsive-
ness to the external stimulus. Formation of longer
(linear) oligomers appears to increase the range of
ligand concentration to which the cell is responsive.
However, inclusion of ring formation in the models
produces a reduction of this responsiveness interval, i.e.
formation of closed oligomers makes the cell response
more specific to ligand concentration. We could argue
that mechanisms in which the cell is responding to a
wide range of ligand concentrations will depend upon
receptors forming long linear oligomers, whereas
response to stimuli in a more specific range of ligand
concentrations will depend upon receptors forming
shorter oligomers or rings.
J. R. Soc. Interface (2006)
Furthermore, under the assumption that ligand
concentration specificity is a design principle for
receptor function, our model allows us to estimate
the values of parameter that are not available in
the literature, as for example Q=N and Ax , i.e. the
threshold proportion of oligomerized receptors to
produce signal and the cross-linking affinity,
respectively.
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Figure 16. Flow chart for the ESSA proposed by Gillespie
(1977). See text for details.

Table 4. Parameter values used in our simulations. (Goldsby
et al. (2003) report values of the affinity for B cell mIg
of 107–1010 MK1. Similar values are reported for some growth
factor receptors (e.g. VEGF receptor; MacGabhann & Popel
2005). The value of kon follows from the values of the affinity
and koff .)

parameter value (units) source

kon 104 (MK1 sK1)

koff 10K3 (1 sK1) MacGabham &
Popel (2005)

AZkon=koff 107 (MK1) Goldsby et al. (2003)
kxon 104 (sK1)

kxonZkoff 10K3 (sK1)
AxZkxon=k

x
off 107 (none)

D 15 (nm) R. Callard (2004,
personal com-
munication)

R 3 (mm) Sulzer et al. (1996)
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APPENDIX A. MONTE CARLO SIMULATIONS
USING EXACT STOCHASTIC
SIMULATION ALGORITHM

A.1. Brief discussion of exact stochastic
simulation algorithm and its physical
foundations

Here we give a brief introduction to the stochastic
formulation of chemical reactions and its implemen-
tation using the ESSA introduced by (Gillespie 1977).5

A schematic flow chart of this algorithm is shown in
figure 16.

The rationale for a stochastic formulation of
chemically reacting systems is simple (Gillespie 1977).
The description yielded by the LMA assumes that the
5Other algorithms, some of themmore computationally efficient, have
been recently reviewed by Burrage et al. (2004).
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6All the second-order reactions considered in our model are of this
type.
7The LMA is a mean field approximation.
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evolution of a chemical system is both continuous and
deterministic. However, if we go to the molecular
population level, the evolution is clearly discrete, since
the number of molecules can only change by integer
amounts. On the other hand, even if the system is
described in terms of the laws of Classical Mechanics, it
is not possible to predict the exact number of molecules
of each species at a later time unless we take account of
the precise position of each molecule in the phase space
(position and momentum of all the molecules of the
system). Hence, although the evolution of the system is
deterministic in its phase space, it is non-deterministic
in the sub-space of the population numbers. Hence,
unless we are dealing with homogeneous systems
containing huge numbers of molecules, the determinis-
tic, continuous description provided by the LMA fails
and a stochastic formulation is needed.

The algorithm proposed by Gillespie (1977) basically
aims to answer the following question: given that the
state of the system, i.e. number of molecules of each
reactant, at time t is X when will the next reaction
occur and which one of the possible elementary
reactions will actually occur? The two quantities
associated to the answer of this question, i.e. the time
until the next reaction, t, and which reaction will occur,
j, are both random variables.

Let Pðt; jÞdt be the probability that, conditioned
to X at time t, the next reaction will occur within
ðtCt; tCtCdtÞ and it will be a r j reaction. Pðt; jÞdt
is given by product of the probability that no reaction
occur within ðt; tCtÞ, P0ðtÞ, and the probability that
the r j reaction occur within ðtCt; tCtCdtÞ:

Pðt; jÞdtZP0ðtÞaj dt: ðA 1Þ
To obtain an expression for P0ðtÞ, note that, in turn,
P0ðtCdtÞ can be expressed as the product of P0ðtÞ and
the probability that no reaction occur within
ðtCt; tCtCdtÞ:

P0ðtCdtÞZP0ðtÞ 1K
X
j

ajdt

 !
; ðA 2Þ

which, in the limit dt/0, yields the solution:

P0ðtÞZ exp K
X
j

ajt

" #
; ðA 3Þ

and therefore

Pðt; jÞZ aj exp K
X
j

ajt

" #
; ðA 4Þ

with 0%t%N and 1% j%M , where M is the total
number of reactions. Once we have obtained this
expression for Pðt; jÞd, the basic point of the algorithm
is to generate two independent random numbers, p and
q corresponding to t and the other to j, respectively,
distributed according to PðtÞZ

P
jaj expK

P
jajt

� �
and

PðjÞZaj=
P

jaj . Note that Pðt; jÞZPðtÞPðjÞ.
The actual details of the implementation of the

algorithm are given in the flow chart shown in figure 16.
Obtaining the reaction probabilities per unit time.

Here we give details of how we obtain the transition
rates given in table 1. Our general discussion follows
(Gillespie 1977). The fundamental assumption is that
the average probability of a particular combination of
J. R. Soc. Interface (2006)
reactants necessary for reaction j to actually react
within ðt; tCdtÞ is equal to cjdt. By average, it is simply
meant that the probability of reaction j occurs within
ðt; tCdtÞ is cjdt multiplied by the total number of
combinations of reactants that can be formed out of the
particular state of the system at time t, hj . Hence, aj is
given by

aj Z cjhjdt: ðA 5Þ
The particular form of hj will depend on the nature of
reaction j. If reaction j is of the type S1CS2/P,6 then
hjZX1X2, where X1 and X2 are the numbers of
molecules of S1 and S2, respectively. If reaction j is of
the type 2S1/P, then hjZX1ðX1K1Þ=2.

There exists a close relationship between cj and the
(macroscopic) reaction rate kj , which is the quantity
usually measured in experiments. In fact, for a reaction
of the type S1CS2/P, we have (Gillespie 1977)

kj ZNcj
hX1X2i
hX1ihX2i

; ðA 6Þ

where the brackets indicate average over an ensemble
of identical systems. However, in the deterministic
formulation of chemical kinetics correlations between
species are ignored7 and, therefore, as long as the
deterministic approximation is valid, hX1X2iZ
hX1ihX2i. Thus, we obtain

cj Z
kj
N

; ðA 7Þ

and from equation (A 7), we obtain the following
expression for the transition rates of reactions of the
type S1CS2/P:

aj Z
kj
N

X1X2 ZNkjx1x2; ðA 8Þ

where xiZXi=N . Similarly, for first-order kinetics
S1/P, we obtain

cj Z kj ; ðA 9Þ
and, therefore,

aj Z kjX1 ZNkjx1; ðA 10Þ
for reactions of the type 2S1/P, we have (Gillespie
1977)

cj Z
2kj
N

; ðA 11Þ

and, accordingly,

aj Z cjX1ðX1K1Þ=2ZNkjx1 x1K
1

N

� �
: ðA 12Þ
A.2. Computation of the probability densities,
QbðTÞ and QxðTÞ

Using Gillespie’s algorithm, we can generate as
many realizations of our model as it is computationally
feasible and come up with average-over-realizations
quantities that we expect are statistically significant.
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Here we give details of how we have computed
average quantities such as probability densities
(figures 3 and 7), QbðTÞ and QxðTÞ.

Computation of the probability densities. The results
shown in figures 3 and 7 show the probability densities
for the model with dimer and trimer formation,
respectively. To calculate them we have proceeded as
follows. For simplicity, we will focus here on the
procedure to obtain the results for the model with
dimer formation (figure 3). The corresponding pro-
cedure for the model with trimer formation (figure 7) is
totally analogous.

(i) The precision is fixed to 1=N (N being the total
number of receptors) for monomers (i.e.
unbound receptors or bound receptors not
engaged in oligomer formation), 2=N for dimers
and 3=N for trimers.

(ii) An array A[i][j] with 0% i%N=2 and 0% j%N,
corresponding to the number of times out of R
realizations that i%X% iC1 and j%B% jC1,
is defined.

(iii) At each realization, the system is allowed to
evolve for long enough for the system (on
average) to settle in equilibrium.

(iv) The values of B and X are checked. If the
condition i!X% iC1 and j%B% jC1
is fulfilled, then the component A[i][j] of the
array is incremented in one unit, so that A½i�½j�=
N corresponds to the frequency with which
i!X% iC1 and j!B% jC1. If the number
of realizations is large enough, this frequency is a
good approximation to the probability of i!X%
iC1 and j!B% jC1.

(v) This process is repeated R times, being R the
number of realizations.

Computation of QbðTÞ and QxðTÞ. The main results
of this paper are given in terms of QxðTÞ, i.e. the
probability that the total number of receptors engaged
in oligomer formation (either dimer or linear trimer or
ring), NO, exceeds a threshold,Q, for a time longer than
T. The procedure to calculate QxðTÞ is as follows.

(i) At each realization, the system is allowed to
evolve for long enough for the system (on
average) to settle on a stationary state.
The reason for this is we want to be sure that
QxðTÞ depends only on T and not, for example,
on the time at which NO becomes bigger than Q.

(ii) The time at which NO has crossed Q for the last
time is registered.

(iii) If, at the time of calculating QxðTÞ, the
condition NORQ has held for a time longer
than T, then QxðTÞ is increased by 1=R, being
R the total number of realizations. Note that
QxðTÞ is independent of the time at which we are
calculating it because the system is in a
stationary state.

(iv) This process is repeated R times.

The actual value of NO varies from model to
model, being NOZX for the model with dimer
J. R. Soc. Interface (2006)
formation, NOZXCX1C3Y=2 for the model with
linear trimer formation andNOZXCX1C3ðYCZÞ=2
for the model with ring formation.

The computation of QbðTÞ is done in a completely
analogous way: QbðTÞ is increased by 1=R if, in a given
realization, the condition BRQ has held for a time
longer than T.
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